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Percolation and jamming in random bond deposition

Grzegorz Kondrat and Andrzej Pe¸kalski
Institute of Theoretical Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland

~Received 15 June 2001; published 24 October 2001!

A model is presented in which on the bonds of a square lattice linear segments~‘‘needles’’! of a constant
lengtha are randomly placed. We investigate the dependence of the percolation and jamming thresholds on the
length of the needles. The difference from the standard site deposition problem is demonstrated. We show that
the system undergoes a transition ata56. When shorter needles are used, the system first becomes percolating
before becoming jammed. For longer needles the lattice becomes jammed but there is no percolation. We
present evidence that the transition is due to different clustering of the short and long needles. We also
determine the Fisher exponent, obtaining the same value as for standard two-dimensional percolation .
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I. INTRODUCTION

Recently there has been much theoretical and experim
tal interest in random sequential adsorption~RSA! models.
In this approach finite objects are randomly deposited,
by one, onto an initially empty substrate~e.g., a lattice or a
continuous surface!, and are adsorbed if there is no overla
ping with previously adsorbed objects. These kinds of m
els have a wide range of applications in physics, chemis
biology, etc. for describing processes in which microscop
steps are irreversible.

A large group of RSA problems was motivated by t
study of kinetics of some chemical reactions, e.g., sim
cyclization reactions~see Ref.@1#, in which the RSA ap-
proach itself originates!, irreversible dissociation from poly
mer chains@2#, and the binding of large ligands to polyme
chains@3#. Another area of applicability is the desorption
large molecules like proteins on solid surfaces@4# or macro-
molecules on biological membranes@5#. Many properties of
growth processes in three-dimensional solid state physics@6#
are well described by the RSA approach as well. Also so
ecological @7# and sociological problems@8# were succes-
fully solved using RSA. For an extensive overview of t
field, see Ref.@9#.

In the context of RSA the notion of jamming is very im
portant. A system reaches a jamming point if no more
jects can be adsorbed due to the lack of available space.
jamming thresholdcj is then defined as a fraction of occu
pied surface at that moment.

The problem of percolation is an old one@10#, but there
are still new results and new questions being posed@11,12#.
In a standard formulaton on ad-dimensional lattice each sit
can be occupied with a probabilityc ~or empty with a prob-
ability 12c). Neighboring occupied sites form a cluster. T
cluster is said to be percolating if it reaches two oppos
edges of the lattice~e.g., the top and bottom!. The lowest
concentration of occupied sites for which there is a perco
ing cluster for an infinite lattice limit is called the percolatio
thresholdcp @11#.

There are many applications of percolation theory, es
cially in spatially disordered systems, porous media and c
cal phenomena. For an overview see, e.g., Ref@13#.

Apart from the relatively well known case of the RSA
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spheres~modelling, e.g., adsorption of spherical molecul
@4#! there is an interesting domain of the study of RSA
rectangles or line segments. These models can be use
describing the characteristics of composites or mater
made in the process of adsorption of rodlike polymers
conducting needles@14#. In these models~both continuous
and discrete! the central point of interest is often the kinetic
of the process. However, here we concentrate on the de
dence of thresholds on the length ratioa of adsorbed objects
~rectangles!. As the continuous approach differs in some p
dictions from the lattice site one@e.g., the jamming threshold
cj (a)→0 asa→` for the continuous case@15# and cj (a)
→cj* Þ0 for the discrete case@16##, there are also feature
that distinguish between the site and bond formulation of
discrete~lattice! problem. To the best of our knowledge
needles’ adsorption on bonds has never been considere
the literature.

II. MODEL

Here we investigate a system in which linear segme
~‘‘needles’’! of lengtha are randomly placed on the bonds
the square lattice. The needles may touch but they can
cross each other or have a common bond. At each step o
simulation we randomly generate~from uniform distribution!
the position and orientation of the needle to be inserted
there is no possibility of depositing the needle, we discar
and go on to the next step. The essential difference betw
the site deposition investigated, e.g., in Refs.@16,17# and the
present study is that now the two closest parallel need
themselves do not touch— a connecting path is realized o
by vertical and horizontal needles touching somewhere
their length. As before@16#, we use hard boundary cond
tions, meaning that no part of any needle may stick out fr
the lattice. We have verified that allowing for open bounda
conditions does not alter the results.

We investigate two phenomena, percolation and jamm
The percolation threshold is defined as a concentrationcp of
needles at which there is an uninterrupted path, following
bonds occupied by the needles, from the top to the bottom
the lattice@11#. The smallest possible length of the needl
a51, corresponds to the standard bond percolation,
which we recover the well-known resultcp50.5 @11#. The
©2001 The American Physical Society18-1
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jamming threshold is defined as a concentrationcj of
needles, above which it is impossible to add another ne
of a given length to the lattice@9#.

We shall study, using Monte Carlo simulations, the d
pendence of the two thresholds and their ratio on the len
a of the needles. We shall also compare the results with th
obtained for site percolation and jamming@16#. Most of the
results were found for aL51000 square lattice~although
smaller and larger lattices,L530, 100, 300, and 3000, wer
also considered! and averaged over 100 independent ru
We have checked that the statistics is not much improved
averaging over 1000 runs.

III. RESULTS

We have found that percolation in the system sets in o
for short needles witha<a* 56. In the case of longe
needles no percolating cluster exists for large enough latt
~e.g., out of 1000 samples fora57, only two percolate on a
3003300 lattice, but none on a 100031000 lattice!. The
longer the needles, the higher the chance of absence of
colation~jamming sets in in the system first!. This probabil-
ity is drawn in Fig. 1 against the needle length. The transit
from a percolating to a nonpercolating system occurs a
rather narrow range of the needle length. Asymptotica
(L→`) we expect a step function. A possible explanati
for the existence of a nonpercolating regime is discus
further. This behavior distinguishes between the bond pr
lem and the site one, since in the latter we can always re
percolation threshold for all needle lengths@16#. The absence
of percolation was reported earlier in a different context a
for the site problem; see, e.g., Ref.@18# in the case of the
RSA of squares, or a more general model@19# of RSA of
rectangles, both on site square lattices.

The variation of the percolation thresholdcp with increas-
ing needle lengtha is shown in Fig. 2~we consider onlya
<6, since above this point there is no percolation!. The un-
certainties of thecp are below 0.004; therefore, we are co
vinced that there is a minimum fora5amin54. As there was

FIG. 1. ProbabilityNp for the absence of percolation in th
system vs needle lengtha51 . . . 6 forlattice sizesL530, 100, and
1000, averaged over 1000 samples.
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a similar minimum for the site problem~see Ref.@15#!, for
longer needles (amin513), we expect the same mechanis
to be responsible for both phenomena. For longer nee
there is a competition between enlarging the range of c
nection and the increasing difficulty in restoring connecti
~for details, see Ref.@16#!. For a>6, however, it is so diffi-
cult for one needle to become connected to others that
colation does not appear. The difference between sites
bonds here is crucial. In the site problem two close para
needles can be connected via other parallel needles lyin
between them. In a bond problem, however, even the
closest parallel needles remain disconnected unless they
touch the same perpendicular needle. Thus we suppose
for long needles small clusters work as shields, preven
the formation of a connected network of bonds in the syste
Another argument supporting our conjecture is found by
direct inspection of snapshots of the needle arrangemen
example of which can be seen in Fig. 3. The state of a sys
of needles witha58 at the jamming point is shown there.

In order to obtain some more insight into the problem,
have also examined the cluster structure of the system
jamming, when no more needles can be added. As we
see in Fig. 4, there is a clear change in the shape fora56.
For smalla most of the mass carried by the needles con
tutes a large percolating cluster. For long needles more
more mass is accumulated in very small clusters, espec
in single isolated needles. That is, 2.5% of the total mas
concentrated in such needles fora54, and 16.5% fora57.

To establish a connection between our model and o
percolation critical phenomena we have verified the so ca
Fisher law@11#. It is generally observed that, for percolatio
models the cluster size distribution function measured at
percolation point follows a power law

ns~cp!}s2t,

where the Fisher exponent is equal@13# to

FIG. 2. Thresholds for percolationcp , jamming cj , and their
ratio cp /cj for a51 . . . 6. Thelattice size isL51000, averaged
over 100 samples.
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and is a universal quantity throughout many two-dimensio
~2D! models. The results of our investigations are presen
in Fig. 5, where size distribution functions for clusters
percolation are ploted on a log-log graph for various nee
lengths. Averaged over 100 samples on a 100031000 lattice,
‘‘experimental’’ points follow straight lines with the sam
slope for all a51 . . . 6, determined to be2t522.02
60.04. Thus our model (a.1) manifests the same chara
teristic as in standard 2D percolation (a51).

FIG. 4. Plot ofM (s), the number of unit bonds in clusters n
larger thans vs s, measured at the jamming point. The lattice size
L5100, averaged over 10 000 samples. The needle lengths aa
52, 4, 5, 6, 7, and 10.

FIG. 3. Snapshot of a spatial distribution of needles at the ja
ming threshold forL5100. The needle length isa58; therefore, no
percolation appears.
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Let us now analyze the jamming thresholdcj as a func-
tion of the needle lengtha. It appears that points conform t
the following formula with very high accuracy~see Fig. 6!:

cj~a!2cj* }aD,

where cj* 50.335060.0025 andD521.0560.10 ~uncer-
tainties are obtained from graph analysis for various t
values ofcj* and D). The same kind of dependence w
found for the site RSA of needles@16#, but with cj* (sites)
50.6660.01. Let us compare the jammed state for both
tices ~bonds and sites!, especially for very long needles. I
both cases needles tend to form domains of parallel alig
ment, the interdomain space being relatively empty. In
mains for sites almost all sites are occupied, but for bo
about 50% of bonds are perpendicular to the needles and
empty. This explains the relationcj* (sites)52cj* (bonds).

FIG. 5. Cluster size distribution functionsns for a51 . . . 6 at
the percolation point, averaged over 100 samples;L51000. Data
sets for eacha are separated by a factor of 2 for clarity.

-

FIG. 6. Power law approach of thea5` limit for the jamming
threshold. Lattice L51000, averaged over 100 samples,a
510 . . . 40. A meanstandard deviations ~dotted lines! is also
shown.
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It should be noted that there were estimates forcj* (sites)
only ~also see Ref.@17#!. The dependence ofcj on a is quite
different for continuous models of RSA of rectangles~see,
e.g., Ref.@15# or @20#!: cj (a)}aD with D520.2 @20# or D
520.26 @15#, the threshold tending to zero asa→`.

FIG. 7. Convergence analysis. The values of the thresholdscp ,
cj , andcp /cj are plotted with error bars against the lattice sizeL.
Herea55, and averaging is over 100 samples.
to

n
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Having determinedcp and cj we can look at their ratio
cp /cj carrying some information about the structure of t
system~see Fig. 2!. One can easily see thatcp /cj is almost
linear with a. Finally, we analyzed the convergence of t
thresholds asL tends to infinity. It appears that forL/a
.15 the values ofcp andcj do not vary much with increas
ing L ~keepinga constant! while the mean standard deviatio
s drops significantly. Thus it is safe to cosider the values
the thresholds obtained forL51000 as the asymptotic~ex-
act! ones—see Fig. 7.

IV. CONCLUSIONS

We have investigated the random deposition of linear s
ments on the bonds of a square lattice. As in the case in
tigated earlier@16#, we have found a minimum in the perco
lation threshold dependence on the length of the depos
objects. We believe that the same mechanism is respon
for both results. Unlike the site case, here, for needles lon
thana56, the system cannot reach the percolation thresh
since it becomes jammed first. The ratio of the two thre
olds shows~till a56) a linear behavior. For the Fisher ex
ponent we obtained the same value as for the standarda
51) 2D percolation problem, which suggests the same u
versality class.
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