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Percolation and jamming in random bond deposition
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A model is presented in which on the bonds of a square lattice linear segftireéslles”) of a constant
lengtha are randomly placed. We investigate the dependence of the percolation and jamming thresholds on the
length of the needles. The difference from the standard site deposition problem is demonstrated. We show that
the system undergoes a transitioraat6. When shorter needles are used, the system first becomes percolating
before becoming jammed. For longer needles the lattice becomes jammed but there is no percolation. We
present evidence that the transition is due to different clustering of the short and long needles. We also
determine the Fisher exponent, obtaining the same value as for standard two-dimensional percolation .
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[. INTRODUCTION spheres(modelling, e.g., adsorption of spherical molecules
[4]) there is an interesting domain of the study of RSA of
Recently there has been much theoretical and experimeriectangles or line segments. These models can be used in
tal interest in random sequential adsorpti®SA) models.  describing the characteristics of composites or materials
In this approach finite objects are randomly deposited, on&ade in the process of adsorption of rodlike polymers or
by one, onto an initially empty substrate.g., a lattice or a conducting needlegl4]. In these modelgboth continuous
continuous surfageand are adsorbed if there is no overlap- and discretgthe central point of interest is often the kinetics
ping with previously adsorbed objects. These kinds of modof the process. However, here we concentrate on the depen-
els have a wide range of applications in physics, chemistrydence of thresholds on the length ragiof adsorbed objects
biology, etc. for describing processes in which microscopicalrectangles As the continuous approach differs in some pre-
steps are irreversible. dictions from the lattice site orle.g., the jamming threshold
A large group of RSA problems was motivated by theCj(a)—0 asa—o for the continuous casfl5] and c;(a)
study of kinetics of some chemical reactions, e.g., simple~cj #0 for the discrete casgi6]], there are also features
cyclization reactiongsee Ref.[1], in which the RSA ap- that distinguish between the site and bond formulation of the
proach itself originatesirreversible dissociation from poly- discrete(lattice) problem. To the best of our knowledge a
mer chaing 2], and the binding of large ligands to polymer needles’ adsorption on bonds has never been considered in
chains[3]. Another area of applicability is the desorption of the literature.
large molecules like proteins on solid surfagdsor macro-
molecules on biological membrangs]. Many properties of Il. MODEL
growth processes in three-dimensional solid state phy6ics
are well described by the RSA approach as well. Also some Here we investigate a system in which linear segments
ecological[7] and sociological problemg8] were succes- (“needles”) of lengtha are randomly placed on the bonds of
fully solved using RSA. For an extensive overview of thethe square lattice. The needles may touch but they cannot
field, see Ref[9]. cross each other or have a common bond. At each step of the
In the context of RSA the notion of jamming is very im- simulation we randomly generagigom uniform distribution
portant. A system reaches a jamming point if no more obthe position and orientation of the needle to be inserted. If
jects can be adsorbed due to the lack of available space. Thieere is no possibility of depositing the needle, we discard it
jamming thresholdt; is then defined as a fraction of occu- and go on to the next step. The essential difference between
pied surface at that moment. the site deposition investigated, e.g., in R¢16,17 and the
The problem of percolation is an old oh&0], but there  present study is that now the two closest parallel needles
are still new results and new questions being pd4d¢12.  themselves do not touch— a connecting path is realized only
In a standard formulaton ondadimensional lattice each site by vertical and horizontal needles touching somewhere on
can be occupied with a probability(or empty with a prob- their length. As beford16], we use hard boundary condi-
ability 1—c). Neighboring occupied sites form a cluster. Thetions, meaning that no part of any needle may stick out from
cluster is said to be percolating if it reaches two oppositghe lattice. We have verified that allowing for open boundary
edges of the latticée.g., the top and bottomThe lowest conditions does not alter the results.
concentration of occupied sites for which there is a percolat- We investigate two phenomena, percolation and jamming.
ing cluster for an infinite lattice limit is called the percolation The percolation threshold is defined as a concentrati
thresholdc, [11]. needles at which there is an uninterrupted path, following the
There are many applications of percolation theory, espebonds occupied by the needles, from the top to the bottom of
cially in spatially disordered systems, porous media and critithe lattice[11]. The smallest possible length of the needles,
cal phenomena. For an overview see, e.g., [R8f. a=1, corresponds to the standard bond percolation, for
Apart from the relatively well known case of the RSA of which we recover the well-known resut,=0.5[11]. The
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FIG. 2. Thresholds for percolatiory,, jammingc;, and their
ratio c,/c; for a=1...6. Thelattice size isL=1000, averaged
over 100 samples.

FIG. 1. ProbabilityN, for the absence of percolation in the
system vs needle lengd=1 . . . 6 forlattice sized =30, 100, and
1000, averaged over 1000 samples.

jamming threshold is defined as a concentratign of  a similar minimum for the site problertsee Ref[15]), for
needles, above which it is impossible to add another needlenger needlesd,;,=13), we expect the same mechanism
of a given length to the latticf9]. to be responsible for both phenomena. For longer needles
We shall study, using Monte Carlo simulations, the de-there is a competition between enlarging the range of con-
pendence of the two thresholds and their ratio on the lengthection and the increasing difficulty in restoring connection
a of the needles. We shall also compare the results with thosgor details, see Ref16]). Fora=6, however, it is so diffi-
obtained for site percolation and jammiftf]. Most of the  cult for one needle to become connected to others that per-
results were found for & =1000 square latticéalthough colation does not appear. The difference between sites and
smaller and larger lattices,= 30, 100, 300, and 3000, were bonds here is crucial. In the site problem two close parallel
also considergdand averaged over 100 independent runsneedles can be connected via other parallel needles lying in
We have checked that the statistics is not much improved bipetween them. In a bond problem, however, even the two

averaging over 1000 runs. closest parallel needles remain disconnected unless they both
touch the same perpendicular needle. Thus we suppose that
. RESULTS for long needles small clusters work as shields, preventing

the formation of a connected network of bonds in the system.

We have found that percolation in the SyStem sets in OnlyAnother argument Supporting our Conjecture is found by a
for short needles witha<a*=6. In the case of longer djrect inspection of snapshots of the needle arrangement, an
needles no percolating cluster exists for large enough latticesxample of which can be seen in Fig. 3. The state of a system
(e.g., out of 1000 samples far=7, only two percolate on a of needles witha=8 at the jamming point is shown there.
300x 300 lattice, but none on a 108A000 latticg. The In order to obtain some more insight into the problem, we
longer the needles, the higher the chance of absence of pajave also examined the cluster structure of the system at
colation(jamming sets in in the system fiysfThis probabil-  jamming, when no more needles can be added. As we can
ity is drawn in Fig. 1 against the needle length. The transitiorsee in Fig. 4, there is a clear change in the shapefo6.
from a percolating to a nonpercolating system occurs at &or smalla most of the mass carried by the needles consti-
rather narrow range of the needle length. Asymptoticallytutes a large percolating cluster. For long needles more and
(L—c0) we expect a step function. A possible explanationmore mass is accumulated in very small clusters, especially
for the existence of a nonpercolating regime is discusseth single isolated needles. That is, 2.5% of the total mass is
further. This behavior diStingUiSheS between the bond prObconcentrated in such needles m:r_-4, and 16.5% foa=7.
lem and the site one, since in the latter we can always reach Tg establish a connection between our model and other
percolation threshold for all needle lengfi$]. The absence percolation critical phenomena we have verified the so called
of percolation was reported earlier in a different context andrisher law[11]. It is generally observed that, for percolation
for the site problem; see, e.g., Ré18] in the case of the models the cluster size distribution function measured at the

RSA of squares, or a more general mofied] of RSA of  percolation point follows a power law
rectangles, both on site square lattices.

The variation of the percolation threshalg with increas-
ing needle lengtha is shown in Fig. 2(we consider onlya Ng(Cp)ocs™7,
<6, since above this point there is no percolatiofhe un-
certainties of thec, are below 0.004; therefore, we are con-
vinced that there is a minimum fer=a,,;,=4. As there was where the Fisher exponent is eqiaB] to
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FIG. 5. Cluster size distribution functions, for a=1...6 at
the percolation point, averaged over 100 samples;1000. Data
sets for eacla are separated by a factor of 2 for clarity.

FIG. 3. Snapshot of a spatial distribution of needles at the jam- L€t Us now analyze the jamming threshaidas a func-
ming threshold fot. = 100. The needle length &=8; therefore, no  tion of the needle length. It appears that points conform to

percolation appears. the following formula with very high accuradgee Fig. &
c.(a)—croad,
187 . )
7= g1 ~ 2055 where ¢ =0.3350+0.0025 andA=—1.05+0.10 (uncer-

tainties are obtained from graph analysis for various trial

. . . _ _ alues ofc’ and A). The same kind of dependence was
and is a universal quantity throughout many two-d|menS|onar und for the site RSA of needIdd 6], but with c* (sites)
(2D) models. The results of our investigations are presenteuﬁJ 001 L he i ’ d # both |

in Fig. 5, where size distribution functions for clusters at70'66— ‘01 Letus compare the jammed state for both lat-
percolation are ploted on a log-log graph for various need| ices (bonds and sitgs especially for very long needles. In

lengths. Averaged over 100 samples on a 200000 lattice, moetgtc?r?eesin?gr%%?nsaitr?nsd ;%éoggndog?;?iie?f p;e:rrlal':el ﬁ:'%r:f'
“experimental” points follow straight lines with the same ' P 9 y Ply.

sope for ala=1...6, deermingd to be-1- 202 TS 7 Stes arost al stes are occumed, utfor bonde
+0.04. Thus our modela>1) manifests the same charac- i Th(') lains th P Ipt' it 2¢* (bond
teristic as in standard 2D percolatioa=1). empty. This explains Ihe rela 'GIT(S' esy=2cj (bonds).
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FIG. 4. Plot ofM(s), the number of unit bonds in clusters not FIG. 6. Power law approach of tlee=co limit for the jamming
larger thars vs s, measured at the jamming point. The lattice size isthreshold. Lattice L=1000, averaged over 100 samples,
L=100, averaged over 10 000 samples. The needle lengtha are=10...40. A meanstandard deviationr (dotted line$ is also
=2,4,5,6,7, and 10. shown.
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FIG. 7. Convergence analysis. The values of the threshgds
¢;, andc,/c; are plotted with error bars against the lattice dize
Herea=5, and averaging is over 100 samples.

It should be noted that there were estimatesclj*o(rsites)
only (also see Ref.17]). The dependence af onais quite
different for continuous models of RSA of rectangiege,
e.g., Ref[15] or [20]): ¢;(a)>a® with A=—0.2[20] or A
= —0.26[15], the threshold tending to zero as-».
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Having determinect, andc; we can look at their ratio
cp/c; carrying some information about the structure of the
system(see Fig. 2 One can easily see that/c; is almost
linear with a. Finally, we analyzed the convergence of the
thresholds ad. tends to infinity. It appears that fdr/a
>15 the values o€, andc; do not vary much with increas-
ing L (keepinga constantwhile the mean standard deviation
o drops significantly. Thus it is safe to cosider the values of
the thresholds obtained fdr=1000 as the asymptoti@x-
act ones—see Fig. 7.

IV. CONCLUSIONS

We have investigated the random deposition of linear seg-
ments on the bonds of a square lattice. As in the case inves-
tigated earlief16], we have found a minimum in the perco-
lation threshold dependence on the length of the deposited
objects. We believe that the same mechanism is responsible
for both results. Unlike the site case, here, for needles longer
thana=6, the system cannot reach the percolation threshold,
since it becomes jammed first. The ratio of the two thresh-
olds shows(till a=6) a linear behavior. For the Fisher ex-
ponent we obtained the same value as for the standard (
=1) 2D percolation problem, which suggests the same uni-
versality class.
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